Detection of Changes in Ground-Level Ozone Concentrations via Entropy
نویسندگان
چکیده
Ground-level ozone concentration is a key indicator of air quality. There may exist sudden changes in ozone concentration data over a long time horizon, which may be caused by the implementation of government regulations and policies, such as establishing exhaust emission limits for on-road vehicles. To monitor and assess the efficacy of these policies, we propose a methodology for detecting changes in ground-level ozone concentrations, which consists of three major steps: data transformation, simultaneous autoregressive modelling and change-point detection on the estimated entropy. To show the effectiveness of the proposed methodology, the methodology is applied to detect changes in ground-level ozone concentration data collected in the Toronto region of Canada between June and September for the years from 1988 to 2009. The proposed methodology is also applicable to other climate data.
منابع مشابه
Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network
Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...
متن کاملShort-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network
Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...
متن کاملDetermination of Spatial-Temporal Correlation Structure of Troposphere Ozone Data in Tehran City
Spatial-temporal modeling of air pollutants, ground-level ozone concentrations in particular, has attracted recent attention because by using spatial-temporal modeling, can analyze, interpolate or predict ozone levels at any location. In this paper we consider daily averages of troposphere ozone over Tehran city. For eliminating the trend of data, a dynamic linear model is used, then some featu...
متن کاملتخمین غلظت ازن در سطح زمین با استفاده از روش رگرسیون خطی چند متغیره و تعیین پارامترهای موثر
Background and Objective: Ground level ozone (O3) is one of most dangerous pollutants for human health in urban areas. The aim of this study was to identify the factors affecting the formation of ozone and modeling the spatial and temporal variations of ozone concentration in Tehran metropolitan area. Materials and Methods: The data used in this research included meteorological data and pollut...
متن کاملAn estimation of COPD cases and respiratory mortality related to Ground-Level Ozone in the metropolitan Ahvaz during 2011
Background & Aims of the Study : Ground-Level Ozone (GLO) is the component of one of greatest concern that threatened human health in both developing as well as developed countries. The GLO mainly enters the body through the respiration and can cause decrements in pulmonary complications, eye burning, shortness of breath, coughing, failure of immune defense, decreases forced vital cap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 17 شماره
صفحات -
تاریخ انتشار 2015